Skip to main content

6.1 Integrating GPT models for conversational AI in robots

Topic: Integrating GPT Models for Conversational AI in Robots


📘 Chapter: Conversational AI with GPT in Humanoid Robots

🔹 Introduction

Conversational AI allows humanoid robots to understand and respond to human language naturally. By integrating GPT models, robots can process speech, text, and intent, enabling intelligent and context-aware conversations.

Humanoid robots equipped with GPT-powered conversational AI can:

  • Answer questions
  • Give instructions
  • Engage in social interaction
  • Assist in tasks

🧠 1. Overview of GPT Models for Robotics

What GPT Provides:

  • Language understanding (NLU)
  • Context-aware responses
  • Text generation and summarization
  • Multi-turn conversation handling

Why GPT for Robots?

  • Scalable: Single model can handle multiple tasks
  • Flexible: Can understand varied user inputs
  • Integratable: Works with Python, ROS, cloud APIs

🧠 2. Speech Recognition and NLU Pipeline

┌───────────────────────────────┐
│ 1. Microphone / Audio Input │
└─────────────┬─────────────────┘

v
┌───────────────────────────────┐
│ 2. Speech-to-Text Engine │
│ (Google STT / Whisper) │
└─────────────┬─────────────────┘

v
┌───────────────────────────────┐
│ 3. GPT Model (NLU + Response) │
│ - Understand context │
│ - Generate text response │
└─────────────┬─────────────────┘

v
┌───────────────────────────────┐
│ 4. Text-to-Speech (TTS) │
│ - Convert GPT text to speech │
└─────────────┬─────────────────┘

v
┌───────────────────────────────┐
│ 5. Humanoid Robot Response │
│ - Mouth / Speaker / Gestures │
└───────────────────────────────┘

🌀 3. Workflow for GPT Integration in Humanoids

  1. Audio Capture: Robot uses microphone to record user speech
  2. Speech-to-Text: Converts audio to text
  3. GPT Processing:
    • Processes text
    • Understands intent & context
    • Generates conversational response
  4. Text-to-Speech: Converts GPT output to audio
  5. Robot Actuation: Robot speaks and optionally moves body/gestures

🤖 4. Implementation Components

Core Modules:

  • Speech Recognition: Whisper, Google STT, or Azure Speech
  • GPT Model: OpenAI GPT API / Local GPT Model
  • Text-to-Speech: Coqui TTS, gTTS, or Azure TTS
  • Robot Control Interface: ROS2 / Python SDK for humanoid

Integration Example (Python Pseudo Code)

# Speech-to-Text
user_input = speech_to_text(microphone)

# GPT Response
response_text = gpt_model.generate(user_input)

# Text-to-Speech
audio_output = text_to_speech(response_text)

# Play audio on robot
robot.speaker.play(audio_output)

🏭 5. Applications

  • Customer service humanoids
  • Companion robots for elderly or children
  • Educational humanoid robots
  • Interactive guides in museums or events
  • Assistive robots in homes or hospitals

📝 6. Self Assignment

Tasks:

  1. Setup a GPT API account (OpenAI / local GPT)
  2. Use microphone to capture speech input
  3. Convert speech to text (STT engine)
  4. Send text to GPT and receive response
  5. Convert GPT response to speech and play it
  6. Add simple gestures for robot when replying

7. MCQs (Multiple Choice Questions)

Q1. GPT in robots is used for?

A. Battery optimization
B. Language understanding & response generation
C. Mechanical control
D. Temperature sensing

Correct Answer: B

Q2. Which module converts speech to text?

A. Text-to-Speech
B. GPT Model
C. Speech Recognition Engine
D. ROS2

Correct Answer: C

Q3. Text-to-Speech (TTS) does?

A. Converts robot commands to code
B. Converts GPT text response to audio
C. Generates visual animations
D. Measures robot velocity

Correct Answer: B

Q4. Which interface is commonly used to control humanoid robots?

A. Microsoft Excel
B. ROS2 / Python SDK
C. Unity only
D. Linux Terminal only

Correct Answer: B

Q5. What is the main benefit of GPT in humanoids?

A. Makes robots walk faster
B. Enables context-aware conversation
C. Charges robot battery
D. Improves camera resolution

Correct Answer: B


This chapter explains Integrating GPT Models for Conversational AI in humanoid robots with workflow, practical example, and self-assignment exercises.